Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biol. Res ; 54: 24-24, 2021. ilus, graf
Article in English | LILACS | ID: biblio-1505791

ABSTRACT

BACKGROUND: Accumulating evidence has demonstrated that the electroacupuncture (EA) stimulation could effectively alleviate neuropathic pain. The medial prefrontal cortex (mPFC) is a vital part of the cortical representation of pain in the brain, and its glucose metabolism is mostly affected in the progression of pain. However, the central mechanism of EA analgesia remains unclear. METHODS: Fifty-four male SD rats were equally randomized into sham surgery (Sham) group, chronic constriction injury (CCI) group and EA stimulation (EA) group. The CCI model, involving ligature of the right sciatic nerve, was established in all animals except the Sham group. EA stimulation was applied on the right side acupoints of Huantiao (GB30) and Yanglingquan (GB34) in the EA group. Paw withdrawal threshold (PWT) and paw thermal withdrawal latency (PWL) were measured. The 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) was used to evaluate glucose metabolism changes in the mPFC. The expression of glucose transporter 3 (GLUT-3) in the mPFC was determined by immune histochemistry and ELISA. RESULTS: Comparing with CCI groups, EA treatment was obviously reversed CCI-induced mechanical allodynia (P < 0.01), thermal hyperalgesia (P < 0.01) and the increase of glucose metabolism in the left mPFC (P < 0.05). Furthermore, EA treatment significantly decreased the protein expression of GLUT-3 in the left mPFC (P < 0.01). CONCLUSIONS: Our results indicate that EA analgesia effect may be related to suppressing the glucose metabolism and GLUT-3 expression in the mPFC. This study could provide a potential insight into the central mechanisms involved in the analgesic effect of EA.


Subject(s)
Animals , Male , Rats , Electroacupuncture , Neuralgia/therapy , Rats, Sprague-Dawley , Prefrontal Cortex , Glucose
2.
Biol. Res ; 53: 36, 2020. tab, graf
Article in English | LILACS | ID: biblio-1131882

ABSTRACT

BACKGROUND: To investigate the thalamic neurotransmitters and functional connections in the development of chronic constriction injury (CCI)-induced neuropathic pain. METHODS: The paw withdrawal threshold was measured by mechanical stimulation the right hind paw with the von frey hair in the rats of CCI-induced neuropathic pain. The N-acetylaspartate (NAA) and Glutamate (Glu) in thalamus were detected by magnetic resonance spectrum (MRS) process. The thalamic functional connectivity with other brain regions was scanned by functional magnetic resonance image (fMRI). RESULTS: The paw withdrawal threshold of the ipsilateral side showed a noticeable decline during the pathological process. Increased concentrations of Glu and decreased levels of NAA in the thalamus were significantly correlated with mechanical allodynia in the neuropathic pain states. The thalamic regional homogeneity (ReHo) decreased during the process of neuropathic pain. The functional connectivity among the thalamus with the insula and somatosensory cortex were significantly increased at different time points (7, 14, 21 days) after CCI surgery. CONCLUSION: Our study suggests that dynamic changes in thalamic NAA and Glu levels contribute to the thalamic functional connection hyper-excitation during CCI-induced neuropathic pain. Enhanced thalamus-insula functional connection might have a significant effect on the occurrence of neuropathic pain.


Subject(s)
Animals , Rats , Thalamus/metabolism , Wounds and Injuries/physiopathology , Neurotransmitter Agents/metabolism , Neuralgia , Thalamus/physiopathology , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Glutamic Acid/metabolism , Constriction , Hyperalgesia
3.
Biol. Res ; 51: 21, 2018. graf
Article in English | LILACS | ID: biblio-950905

ABSTRACT

OBJECTIVE: To explore the precise mechanism of electroacupuncture (EA) to delay cognitive impairment in Alzheimer disease. Methods N -Acetylaspartate (NAA), glutamate (Glu) and myoinositol (mI) metabolism were measured by magnetic resonance spectroscopy, learning and memory of APP/PS1 mouse was evaluated by the Morris water maze test and the step-down avoidance test, neuron survival number and neuronal structure in the hippocampus were observed by Nissl staining, and BDNF and phosphorylated TrkB detected by Western blot. RESULTS: EA at DU20 acupuncture significantly improve learning and memory in behavioral tests, up-regulate NAA, Glu and mI metabolism, increase the surviving neurons in hippocampus, and promote the expression of BDNF and TrkB in the APP/PS1 transgenic mice. CONCLUSION: These findings suggested that EA is a potential therapeutic for ameliorate cognitive dysfunction, and it might be due to EA could improve NAA and Glu metabolism by upregulation of BDNF in APP/PS1 mice.


Subject(s)
Animals , Male , Mice , Electroacupuncture/methods , Aspartic Acid/analogs & derivatives , Glutamic Acid/metabolism , Hippocampus/chemistry , Learning/physiology , Memory/physiology , Protein-Tyrosine Kinases/analysis , Magnetic Resonance Imaging , Membrane Glycoproteins/analysis , Mice, Transgenic , Magnetic Resonance Spectroscopy , Random Allocation , Blotting, Western , Aspartic Acid/metabolism , Maze Learning , Brain-Derived Neurotrophic Factor , Models, Animal , Exercise Test , Hippocampus/diagnostic imaging , Inositol/analysis
4.
Genet. mol. biol ; 40(4): 743-750, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-892440

ABSTRACT

Abstract Heparanase activity is involved in cancer growth and development in humans and single nucleotide polymorphisms (SNPs) in the heparanase gene (HPSE) have been shown to be associated with tumors. In this study, we investigated whether SNPs in HPSE were a risk factor for hepatocellular carcinoma (HCC) by undertaking a comprehensive haplotype-tagging, case-control study. For this, six haplotype-tagging SNPs (htSNPs) in HPSE were genotyped in 400 HCC patients and 480 controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. A log-additive model revealed significant correlations between the HPSE polymorphisms rs12331678 and rs12503843 and the risk of HCC in the overall samples (p = 0.0046 and p = 0.0055). When the analysis was stratified based on hepatitis B virus (HBV) carrier status, significant interactions between rs12331678 and rs12503843 and HBV were observed. Conditional logistic regression analysis for the independent effect of one significant SNP suggested that rs12331678 or rs12503843 contributed an independent effect to the significant association with the risk of HCC, respectively. Our findings suggest that the SNPs rs12331678 and rs12503843 are HCC risk factors, although the potential functional roles of these two SNPs remain to be fully elucidated.

SELECTION OF CITATIONS
SEARCH DETAIL